Abstract

Review Article

Role of the Kidneys in the Regulation of Intra-and Extra-Renal Blood Pressure

Seriki A Samue*, Adebayo O Francis and Odetola O Anthony

Published: 17 July, 2018 | Volume 2 - Issue 1 | Pages: 048-058

Hypertension is one of the most common chronic diseases of human, affecting more than one billion people worldwide. When it becomes chronic, hypertension leaves behind cardiac hypertrophy, heart failure, stroke, and kidney disease, resulting in substantial morbidity and mortality. Treatments that effectively reduce blood pressure can prevent these complications. Abnormalities in the production of urine by the kidneys have been implicated in increased vascular resistance, leading to high blood pressure and increased cardiac mass. By matching urinary excretion of salt and water with dietary intake, balance is usually attained, thereby maintaining a constant extracellular fluid volume and blood pressure. Based on the capacity for the kidney to excrete sodium, this blood pressure-altering mechanism should have sufficient advantage to limit intravascular volume and consequently lower blood pressure in response to a range of stimuli from elevated heart rate to increase peripheral vascular resistance. A major determinant of the level of intra- and extra- renal blood pressure is therefore sodium handling, and it is controlled by complex physiological mechanism by hormones, inflammatory mediators, and the sympathetic nervous system. Homoeostasis and favourable influence sodium balance are a basic mechanism of efficacy for diuretics and dietary sodium restriction in hypertension. Renin Angiotensin System (RAS) inhibitors, vasodilators, and β-blockers work to facilitate pressure-natriuresis. Also, WNK signaling pathways, soluble inflammatory mediators, and pathways regulating extra-renal sodium disposition may be the focus towards elimination of sodium and reducing blood pressure in hypertension.

Read Full Article HTML DOI: 10.29328/journal.ach.1001011 Cite this Article Read Full Article PDF

Keywords:

Hypertension; Renin Angiotensin System; Natriuresis; Sodium balance homeostasis

References

  1. Osborn JW, Fink GD, Kuroki MT. Neural mechanisms of angiotensin II-salt hypertension: implications for therapies targeting neural control of the splanchnic circulation. Curr Hypertens Rep. 2011; 13: 221-228. Ref.: https://tinyurl.com/y8axh8v9
  2. Guyton AC. Blood pressure control -- special role of the kidneys and body fluids. Science. 1991; 252: 1813-1816. Ref.: https://tinyurl.com/y8fxexxe
  3. McCurley A. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat Med. 2012; 18: 1429-1433. Ref.: https://tinyurl.com/ybqzj4mf
  4. Dahl LK, Heine M, Thompson K. Genetic influence of the kidneys on blood pressure. Evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res. 1974; 40: 94-101. Ref.: https://tinyurl.com/ycvplgse
  5. Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012; 23: 1181-1189. Ref.: https://tinyurl.com/y7g4q6vp
  6. Lawes C M, Vander Hoorn S, Rodgers A, International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet. 2008; 371: 1513-1518. Ref.: https://tinyurl.com/ycahczth
  7. Wolf-Maier K, Cooper RS, Banegas JR, Giampaoli S, Hense HW, et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA. 2003; 289: 2363-2369. Ref.: https://tinyurl.com/yc2wugnx
  8. Gu Q, Burt V L, Dillon C F, Yoon S. Trends in antihypertensive medication use and blood pressure control among United States adults with hypertension: The National Health And Nutrition Examination Survey, 2001 to 2010. Circulation. 2012; 126: 2105-2114. Ref.: https://tinyurl.com/yb6cmatp
  9. Hani MW, Stephen CT. The role of the kidney in regulating arterial blood pressure. Nat Rev Nephrol. 2012; 8: 602-609. Ref.: https://tinyurl.com/y9jfdefu
  10. Matchar DB, McCrory DC, Orlando LA, Patel MR, Patel UD, et al. Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers for treating essential hypertension. Ann Intern Med. 2008; 148: 16-29. Ref.: https://tinyurl.com/y7zxfcr4
  11. Le TH, Coffman TM. Targeting genes in the renin-angiotensin system. Curr Opin Nephrol Hypertens. 2008; 17: 57-63. Ref.: https://tinyurl.com/ycprl2fd
  12. Hall JE. Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am J Physiol. 1986; 250: R960-R972. Ref.: https://tinyurl.com/y8rhrkfy
  13. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007; 59: 251-287. Ref.: https://tinyurl.com/yd4qe48e
  14. Navar LG, Lewis L, Hymel A, Braam B, Mitchell KD. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol. 1994; 5: 1153-1158. Ref.: https://tinyurl.com/y8zz6bac
  15. Navar LG, Harrison-Bernard LM, Wang CT, Cervenka L, Mitchell KD. Concentrations and actions of intraluminal angiotensin II. J Am Soc Nephrol. 1999; 10: S189-S195. Ref.: https://tinyurl.com/ydy6nvlk
  16. Gonzalez-Villalobos RA, Billet S, Kim C, Satou R, Fuchs S, et al. Intrarenal angiotensin-converting enzyme induces hypertension in response to angiotensin I infusion. J Am Soc Nephrol. 2011; 22: 449-459. Ref.: https://tinyurl.com/y9wvwdm8
  17. Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MT, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013; 123: 2011-2023. Ref.: https://tinyurl.com/y9u87rcm
  18. Tamura H, Schild L, Enomoto N, Matsui N, Marumo F, et al. Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest. 1996; 97: 1780-1784. Ref.: https://tinyurl.com/y862nz5l
  19. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000; 289: 119-123. Ref.: https://tinyurl.com/ybklpr83
  20. Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A. 2013; 110: 7838-7843. Ref.: https://tinyurl.com/yc2edjda
  21. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001; 104: 545-556. Ref.: https://tinyurl.com/ycg9hn6w
  22. Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001; 293: 1107-1112. Ref.: https://tinyurl.com/ydf9y4sd
  23. Kahle KT, Ring AM, Lifton RP. Molecular physiology of the WNK kinases. Annu Rev Physiol. 2008; 70: 329-355. Ref.: https://tinyurl.com/yaqqkxyw
  24. McCormick JA, Ellison DH. The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev. 2011; 911:177-219. Ref.: https://tinyurl.com/ycvbm4ap
  25. ALLHAT Officers Coordinators for the ALLHAT Collaborative Research Group the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002; 288: 2981-2997.
  26. Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, et al. Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet. 2006; 38: 1124-1132. Ref.: https://tinyurl.com/y9j66zwp
  27. Ahlstrom R, Yu AS. Characterization of the kinase activity of a WNK4 protein complex. Am J Physiol Renal Physiol. 2009; 297: F685-F692. Ref.: https://tinyurl.com/y7wp9frw
  28. Cai H, Cebotaru V, Wang YH, Zhang XM, Cebotaru L, et al. WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells. Kidney Int. 2006; 69: 2162-2170. Ref.: https://tinyurl.com/ybhd526t
  29. Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, et al. Epigenetic modulation of the renal beta-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med. 2011; 17: 573-580. Ref.: https://tinyurl.com/ycz7lqzd
  30. Hoorn EJ, Walsh SB, McCormick JA, Fürstenberg A, Yang CL, et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011; 17: 1304-1309. Ref.: https://tinyurl.com/y9sayeqr
  31. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012; 482: 98-102. Ref.: https://tinyurl.com/y9e4opta
  32. Prag S, Adams JC. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinformatics. 2003; 4: 42. Ref.: https://tinyurl.com/yakupc8a
  33. Hall JE, Guyton AC, Smith MJ Jr, Coleman TG. Blood pressure and renal function during chronic changes in sodium intake: Role of angiotensin. Am J Physiol. 1980; 239: F271-F280. Ref.: https://tinyurl.com/y7rglkbd
  34. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991; 351: 233-236. Ref.: https://tinyurl.com/y9o4xx77
  35. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009; 15: 545-552. Ref.: https://tinyurl.com/yaabdbdf
  36. Machnik A, Dahlmann A, Kopp C, Goss J, Wagner H, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010; 55: 755-761. Ref.: https://tinyurl.com/ya4qcfa6
  37. Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Invest. 2013; 123: 2803-2815. Ref.: https://tinyurl.com/yda6rgqh
  38. Yang GH, Zhou X, Ji WJ, Zeng S, Dong Y, et al. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2014; 306: H598-H609. Ref.: https://tinyurl.com/yc8z2nnt
  39. Granger JP, George EM. Role of the Kidney in Hypertension. 2012; 1086-1108. Ref.: https://tinyurl.com/y9ruk4af
  40. Griffin KA. Hypertensive Kidney Injury and the Progression of Chronic Kidney Disease. Hypertension. 2017; 70: 687-694. Ref.: https://tinyurl.com/yayeuxhb
  41. Rebecca Hanratty, Michel Chonchol, Edward Havranek P, David Powers J, Miriam Dickinson L, et al. Relationship between Blood Pressure and Incident Chronic Kidney Disease in Hypertensive Patients. Clin J Am Soc Nephrol. 2011; 6: 2605-2611. Ref.: https://tinyurl.com/y88whgoa

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?